

Integrated Application of Artificial Intelligence for efficient poultry farm operation

I. U. Sheikh and B. Zaffer

Division of Livestock Production and Management

Faculty of Veterinary Sciences and Animal Husbandry

*Sher e Kashmir University of Agricultural Sciences and Technology of Kashmir,
Shuhama, Jammu and Kashmir, Srinagar-190006, India*

The global poultry industry is witnessing unprecedented transformation driven by rising consumer demand for safe meat and eggs, increasing pressure on resource efficiency, and the need to mitigate disease risks. As farms scale up and management becomes more complex, traditional manual methods often fall short in ensuring accuracy, timeliness, and cost-effectiveness. In this context, **Artificial Intelligence (AI)** has emerged as a transformative technology capable of integrating data from multiple sources and providing highly accurate, real-time decision support (Shamim et al., 2012).

AI-based solutions not only enhance productivity and farm profitability but also support welfare standards, environmental sustainability, and biosecurity—making the approach highly relevant to modern poultry production systems (Mahdi and Haque, 2018).

1. Evolution of AI in Poultry Farming

Historically, poultry operations relied extensively on human observation, experience-based decisions, and manual monitoring of flock parameters. While such approaches brought considerable progress, they became insufficient with the expansion of flock sizes, intensification of production systems, and emergence of new pathogens.

The last decade has seen rapid advancements in sensor technologies, machine learning algorithms, image processing, and automation, enabling AI to be embedded at every stage of poultry production—from hatchery to processing. Today, AI is a central component of modern “smart poultry farming,” where farms operate as **data-driven ecosystems**.

2. Precision Environmental Monitoring and Control

Maintaining an optimal microenvironment is fundamental to poultry performance. Birds are highly sensitive to fluctuations in temperature, humidity, ammonia levels, and air velocity. AI-

powered environmental management systems use a network of real-time sensors to collect continuous data from different zones inside poultry houses.

Machine learning algorithms analyze these data patterns and automatically make micro-adjustments to ventilation, cooling, and heating units.

This leads to:

- Reduced heat and cold stress
- Better litter quality
- Lower incidence of respiratory disorders
- Enhanced feed intake and growth

AI-based systems can also predict possible equipment failures, preventing sudden breakdowns that may cause mortality spikes in sensitive age groups.

3. Smart Nutrition and Feed Optimization

Feed is the largest recurring cost in poultry farming. Variations in feed intake or nutrient imbalance can lead to uneven growth, poor feed conversion ratio (FCR), and increased production costs. AI-based nutrition systems use predictive models to:

- Analyze historical feed intake
- Compare consumption across flocks, batches, and seasons
- Identify deviations caused by disease or environmental stress
- Optimize feed formulations based on performance data

Smart feeders equipped with load cells and sensors help monitor individual or group feeding behavior. The integration of computer vision further enhances the understanding of feeding patterns. This contributes to **precision nutrition**, minimizing wastage and maximizing productivity (Shamim et al., 2012).

4. AI in Early Disease Detection and Health Monitoring

Disease detection is one of the most significant contributions of AI to poultry farming. Early identification prevents large-scale outbreaks and reduces reliance on antibiotics.

a. Computer Vision Systems

High-resolution cameras, combined with AI algorithms, continuously monitor bird activity, gait, and flock uniformity. Sudden declines in movement, clustering in a corner, or abnormal postures can indicate:

- Lameness
- Heat stress
- Infectious diseases
- Water or feed access issues

These systems generate instant alerts to farm managers.

b. Acoustic AI Models

Advanced audio sensors capture sounds inside sheds and detect abnormal respiratory noises such as coughing, coughing patterns, or distress calls. AI can differentiate between:

- Healthy vocalizations
- Respiratory disease symptoms
- Stress-induced noises

This allows early intervention—critical for preventing widespread respiratory infections.

c. Predictive Health Analytics

Machine learning models analyze mortality, weight trends, behavior data, and physiological indicators to predict disease risk days before clinical signs appear. This approach supports a shift from **treatment-based** management to **prevention-driven** management (Mahdi and Haque, 2018).

5. Automation and Robotics in Poultry Operations

AI-powered robots now perform a wide range of repetitive or labour-intensive tasks, significantly reducing dependence on manual labour.

a. Autonomous Litter Robots

Robots equipped with sensors and navigation systems move throughout the house to:

- Stir litter
- Reduce moisture accumulation
- Minimize ammonia build-up

b. Egg Collection and Sorting Robots

These robots detect eggs using machine vision, pick them gently, and sort them by size or quality. This minimizes breakage and improves hygiene.

c. Bird Counting and Monitoring Robots

Mobile robots equipped with cameras autonomously count birds and track movement patterns, providing deeper insight into flock distribution and welfare.

d. Biosecurity Robots

Robots can be programmed for disinfection, reducing human entry into sheds and lowering the risk of pathogen introduction.

6. AI for Performance Prediction and Decision-Support Systems

AI integrates data from sensors, weighing systems, climate controllers, and feed records to provide comprehensive dashboards. These dashboards help farmers:

- Predict body weight outcomes
- Understand growth uniformity
- Plan harvest schedules

- Optimize vaccination programmes
- Estimate feed requirement for upcoming weeks

Machine learning models also offer **scenario-based simulations**, enabling farms to evaluate the impact of changes in lighting, ventilation, or feeding strategies.

7. AI-Integrated Hatchery Management

Hatcheries benefit immensely from AI-driven systems, such as:

- Fertility detection using computer vision
- Embryo viability prediction
- Smart incubators that adjust temperature and humidity automatically
- Post-hatch chick quality assessment
- Automated chick sexing using deep learning

AI enhances hatchability rates and ensures high-quality chick production.

8. Smart Supply Chain and Market Intelligence

AI tools extend beyond the farm gate, supporting strategic planning and market competitiveness:

- Demand forecasting helps align production cycles with market needs
- Algorithm-based broiler placement schedules reduce market gluts
- Smart logistics systems ensure timely transport of feed and live birds
- Blockchain-supported AI tools improve traceability and transparency

With these technologies, farmers gain better control over profits and resource allocation.

9. Environmental Sustainability and Waste Management

AI supports green farming by:

- Optimizing energy use in climate systems
- Reducing feed wastage
- Improving manure management through automated moisture detection
- Predicting greenhouse gas emission trends

Smart water monitoring systems detect leaks or unusual usage patterns, improving water efficiency.

10. Challenges and the Road Ahead

Despite the advantages, certain challenges remain:

- High initial investment for small-scale farmers
- Need for technical training
- Dependence on reliable internet connectivity
- Integration issues across different IoT platforms

Going forward, the integration of AI with **5G networks, edge computing, renewable energy systems, and advanced biosensors** will make solutions more affordable and accessible, even to small and medium poultry farms.

Conclusion

The integrated application of Artificial Intelligence has transitioned poultry farming from conventional management to a **smart, predictive, and automated production system**. AI not only enhances efficiency but also contributes to improved bird welfare, reduced disease risk, and sustainable resource use. With continuous innovation and lower-cost digital tools, AI-driven poultry farming is poised to become a reality for farms of all sizes, helping build a resilient poultry sector that can meet the future protein demand (Shamim et al., 2012; Mahdi and Haque, 2018).

References

Abd Aziz, N.S.N.; Daud, S.M.; Dziyauddin, R.A.; Adam, M.Z.; Azizan, A. (2020). A Review on Computer Vision Technology for Monitoring Poultry Farm—Application, Hardware, and Software. *IEEE Access* 2020, 9, 12431–12445. (PDF) *Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements*. Available from: https://www.researchgate.net/publication/380567368_Beyond_the_Spectrum_Unleashing_the_Potential_of_Infrared_Radiation_in_Poultry_Industry_Advancements [accessed Jun 29 2025].

Connolly, G.; Clark, C.M.; Campbell, R.E.; Byers, A.W.; Reed, J.B.; Campbell, W.W. (2022). Poultry consumption and human health: How much is really known? A systematically searched scoping review and research perspective. *Adv. Nutr.*, 13, 2115–2124.

Day, J. Global Chicken Market Report (2023). Rising Consumption of Poultry Worldwide to Boost Growth; Poultry Producer: Stirling-Rawdon, ON, Canada, 2023.

Dwivedi, Y.K., Hughes, L., Ismagilova, Elvira, Aarts, G., Coombs, C., Crick, T. Duan, Y., Dwivedi, Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P.V., Janssen, M., Jones, P., Kar, A.K., Kizgin, Hatice, Kronemann, B., Lal, B., Lucini, B., Medaglia, R., Le Meunier-FitzHugh, K., Le Meunier-FitzHugh, L.C., Misra, S., Mogaji, E., Sharma, S.K., Singh, J.B., Raghaven, V., Raman, R., Rana, Nripendra P., Samothrakis, S., Spencer, J., Tamilmani, Kuttmani, Tubadji, A., Walton, P. and Williams, M.D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *International Journal of Information Management*. 2021;57:101994

Gebhardt-Henrich, S. G., Stratmann, A. and Dawkins, M. S. (2021). Groups and Individuals: Optical Flow Patterns of Broiler Chicken Flocks Are Correlated with the Behavior of Individual Birds. *Animals*, 11(2), 568. <https://doi.org/10.3390/ani11020568>

Mellor, D.J. and N.J. Beausoleil. (2015). Extending the ‘Five Domains’ model for animal welfare assessment to incorporate positive welfare states. *Anim.Welf.* 24(3):241–253. doi:10.7120/09627286.24.3.241 (PDF) *A peep into the future: artificial intelligence for on-farm poultry welfare monitoring*. Available from: https://www.researchgate.net/publication/387750162_A_peep_into_the_future_artificial_intelligence_for_on-farm_poultry_welfare_monitoring [accessed May 15 2025].

Neethirajan S. (2021). Chick Track—A quantitative tracking tool for measuring chicken activity. *Tech Rxiv*.:1–19. doi: 10.36227/techrxiv.15031440.v1. July 26, 2021, preprint

Shaikh, T.A., Mir, W.A., Rasool, T., Sofi, S. (2022). Machine Learning for Smart Agriculture and Precision Farming: Towards Making the Fields Talk. *Arch. Comput. Methods Eng.*, 29, 4557–4597.

Shukla, P.P., Bhattachayya, A., Sharma, A. (2024). Artificial Intelligence in Poultry Production; SR Publications: Vijayawada, India, 2024.

Smith, D., S., Lyle, A., Berry, N., Manning, M., Zaki, and A. and Neely. (2015). Internet of animal

health things (IoAHT) opportunities and challenges .Cambridge, (UK): University of Cambridge. (PDF) *A peep into the future: artificial intelligence for on-farm poultry welfare monitoring*. Available from:

https://www.researchgate.net/publication/387750162_A_peep_into_the_future_artificial_intelligence_for_on-farm_poultry_welfare_monitoring [accessed May 15 2025].

Thornton G. (2018). 16 innovations to change poultry production. Poultry Tech Summit, Atlanta, 5-7, November 2018, WATT Global Media event, 2018, p. 63.